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ON THE COMPUTATION OF IMPASSE POINTS 
OF QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 

PATRICK J. RABIER AND WERNER C. RHEINBOLDT 

ABSTRACT. We present computational algorithms for the calculation of impasse 
points and higher-order singularities in quasi-linear differential-algebraic equa- 
tions. Our method combines a reduction step, transforming the DAE into a 
singular ODE, with an augmentation procedure inspired by numerical bifurca- 
tion theory. Singularities are characterized by the vanishing of a scalar quantity 
that may be monitored along any trajectory. Two numerical examples with 
physical relevance are given. 

1. INTRODUCTION 

Many applications in science and engineering involve mixed systems of differ- 
ential and algebraic equations (DAEs). For some examples see, for instance, the 
monograph [3]. It is hardly surprising that such systems share many properties 
with ordinary differential equations (ODEs). In fact, recent existence theories 
[5, 10, 11] have shown that, in general, a DAE can be reduced locally to an 
(explicit) ODE on some submanifold of the space of unknown variables. 

However, despite the strong analogy between DAEs and ODEs, important 
differences exist. For instance, from the fact that DAEs are reducible to ODEs 
only on some submanifold of the solution space it follows that solutions of a 
DAE can pass only through points on such a submanifold; that is, its initial 
values must satisfy certain compatibility conditions. Beyond this, solutions of 
DAEs may exhibit features that solutions of explicit ODEs cannot possess. For 
instance, the simple problem 

xi+x2=O, X2=1I X(O)=((,-1) 

has the unique solution x(t) = ((1 - t)1/2, t - 1), which cannot be continued 
beyond t = 1 despite the fact that x(1) = (0, 0) and limt 1- x(t) = x(1) 
exist. This situation would be impossible for solutions of explicit ODEs. 

In the electrical engineering literature, points where the solutions cease to 
exist have been called impasse points (see, e.g., [5] or [6], where also other 
references are given). Although they have no analog in connection with ex- 
plicit ODEs, these impasse points are closely related to the "singular points" 
of implicit ODEs. In [9] the most often encountered type of such singularities 
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for implicit ODEs was analyzed, called there standard singular points. In a 
recent paper [12] it was shown that the geometric reduction theory for DAEs 
presented in [11] allows for a generalization of the results in [9] to so-called 
standard impasse points of quasilinear DAEs. 

The aim of this article will be to show that the theory of [ 12] leads naturally to 
the development of a computational procedure for the explicit computation of 
impasse points and other singularities of quasilinear DAEs. For this we outline, 
in ??2 and 3, briefly and without proof, some of the relevant results for singular 
ODEs and DAEs from the cited earlier papers. Then ?4 presents the details of 
the computational algorithm and finally, in ? 5, we give some numerical examples 
which show the effectivity of the process. 

2. SINGULAR POINTS OF ODEs 

Definition 2.1. Consider a quasi-linear problem 

(2.1) B(y)j = H(y) , y(O) =Yo S 

where B: 2? 5(1iR) and H: * >R Ri are Cl on some open set ? c iR . 
A point y e _ is a regular point of (2.1) if rank B(y) = n, and a singular 
point if rank B(y) < n but y is a limit point of regular points of (2.1). 

Clearly, for a regular point yo E _ the initial value problem (2.1) has a 
unique solution in a neighborhood of yo. But already simple examples show 
that the behavior of the solutions of (2.1) in a neighborhood of a singular point 
yo may vary strongly with the type of singularity encountered there. A partial 
classification of singularities which will be sufficient for our purposes is given 
next. 

Definition 2.2. (i) A singular point y e _ of the ODE in (2.1) is r-singular if 

(2.2) dim kerB(y) = r. 

(ii) An r-singular point y is called algebraic (resp. geometric) if 

(2.3) H(y) ? rgeB(y) (resp. H(y) e rgeB(y)). 

(iii) An algebraic 1-singular point y is a standard singular point if 

(2.4) DB(y)(u, u) ? rgeB(y) Vu e kerB(y)\{O}. 

For an explanation of the terminology "algebraic (resp. geometric) singular 
point", see [12]. We summarize here briefly the theory developed in [9] for 
the case of standard singular points (see also [12]). With a standard singular 
point yo as starting point, the initial value problem (2.1) cannot have a C' 
solution y: J -* on an open interval J containing the origin. In fact, 
this would require that B(yo)(O) = H(yo), which contradicts (2.3). Thus, at 
a standard singular point we may expect at best "one-sided" solutions in the 
following sense. 

Definition 2.3. With a standard singular point yo e 0 as starting point, a 
solution of the initial value problem (2.1) is any continuous function y: J - * 

defined on an interval J = [0, T) or J = (-T, 0] for some T > 0 which is 
of class C' on JO = J\{0} and satisfies y(O) =yo and B(y(t))j(t) = H(y(t)) 
for t E JO. 
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With 

(2.5) a(y)(u, v) = (vT H(y))(v TDB(y)(u, u)), 
the two conditions (2.3) and (2.4) for a standard singular point y are equivalent 
to 

(2.6) a(y)(u, v) + 0 Vu E kerB(y)\{O}, Vv E kerB(y)T\{O}. 

Since (2.5) is a continuous quadratic form in u and in v, its value must be 
either positive or negative for all pairs of nonzero vectors u E kerB(y), v e 
kerB(y)T if only this holds for one such pair of vectors. 

The principal existence result for solutions near standard singular points can 
now be phrased as follows (see [9, Theorem 5.1]). 

Theorem 2.1. Let yo E 2 be a standard singular point of the ODE in (2.1). 
Then the initial value problem (2.1) has exactly two solutions which are both 
defined on J = [0, T) or on J = (-T, 0] for some T > 0 depending upon 
ac(yo)(u, v) > 0 or a(yo)(u, v) < 0, respectively, for some pair of nonzero 
vectors (u, v) E kerB(y) x kerB(y)T. Moreover, 1Ij>(t)ll tends to infinity as 
t E J\{0} tends to zero. 

Theorem 2.1 implies that a solution of (2.1) starting at some regular point 
can reach a standard singular point yo at some later time only if the form 
(2.5) is negative at yo. Standard singular points yo with positive form a(yo) 
obviously can never be reached in increasing time. Thus, in view of the theorem, 
the following notation is appropriate. 

Definition 2.4. A standard singular point yo of (2.1) is accessible or inaccessible 
if a(yo)(u, v) < 0 or a(yo)(u, v) > 0, respectively, for some pair of nonzero 
vectors (u, v) E kerB(y) x kerB(y)T. 

The theorem asserts that accessible standard singular points are reached in 
finite time by trajectories emanating elsewhere in ?2. Since these trajectories 
cannot be continuously extended beyond these points, they represent "catastro- 
phes" for the solutions of (2.1), and standard ODE-solvers fail near such points. 
It can also be shown (loc. cit.) that no small perturbation of the initial condition 
(and/or of B or H) can affect the eventual encounter of such points. 

Standard singular points are analogous to limit points of parametrized non- 
linear equations 

F(z, A) 0. 

Suppose, indeed, that F: 2 - Rn is of class C1 on some open set c c 
Rn X R' and that z: J -+ R' is a C1 mapping on an open interval J such 
that (z(A), A) E 2 and F(z(A), A) = O for A E J. Then 

(2.7) (DzF(z(A) A) 0 (A) (-DAF(z(A)) A)) 

where primes indicate differentiation with respect to A, and hence (2.7) is an 
ODE of the quasi-linear form (2.1). The singular points of (2.7) are exactly 
those (z, A) E 2, for which rankDzF(z, A) < n, that is, which are foldpoints 
of F with respect to A (see, e.g., [13]). The simplest foldpoints are the limit 
points, for which dimkerDzF(z, A) = 1 and DAF(z, A) 0 rge DzF(z, A) . 
Obviously, these two properties correspond to the conditions (2.2) and (2.3) 
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characterizing algebraic 1-singular points, and it is readily checked that (2.4) 
holds exactly for the simple limit points of F (with respect to A ); see, e.g., 
[13]. 

Foldpoints of a parametrized nonlinear system are typically computed by 
solving a suitably augmented form of the system. It is natural to consider the 
same approach for the computation of singular poinis of ODEs. 

Let y = y(t) be a C' solution of (2.1) and suppose that a C' function 
,r R:1t1R R1 with strictly positive derivative is used to define a transformation 
t = T(s) of the independent variable t. Then a(s) = y(T(s)) satisfies 

B(q) dr7 = dT H(q1). ds d 
By Theorem 2.1 the derivative dy/dt becomes infinite when the solution ap- 
proaches a standard singular point y* . This suggest that z should be chosen 
such that du/ds tends to zero as we approach y* but dij/ds remains bounded. 
For instance, we may wish to specify r implicitly by using a normalization 
CT(dl/ds) = 1 with a suitable vector c X DRi. 

This normalization may be obtained by means of an augmented system of 
the form 

(2.8) B(y) 0H ) (yy(y) ) (0) 

where c E lR' is chosen such that at some "current" point Yc E 2 under con- 
sideration the matrix of (2.8) is nonsingular. Certainly, such an augmentation 
can be found if and only if Yc is either a regular point of (2.1) or an algebraic 
1-singular point. 

Hence the matrix of (2.8) remains nonsingular for all y in some open neigh- 
borhood 4c c ' of Yc, whence for fixed y E Wc the solution (v(y), y(y)) E 
Rn+1 of (2.8) is unique. Obviously, we have v(y) $& 0 for all y E Wc and 
y(y) :$ 0 for all regular points y E Wc of (2.1). Moreover, because of (2.3) we 
see that y(y*) = 0 at any algebraic 1-singular point y* E Wc. 

For any regular point yo E Wc the initial value problem (2.1) has a unique, 
local C' solution y: [0, T) -* Wc for some T > 0 such that B(y(t)) is 
nonsingular for t E [0, T) (we confine attention to positive time since we 
assume that the system evolves from t = 0 on). Suppose that y(yo) > 0. Then 
y(y(t)) > 0 for 0 < t < T and the initial value problem 

(2.9) dt =y(t), s > 0, t(0) =0, 

has a unique, monotonically increasing solution -r [0, a) -* R1 with 0 < 
z(u) < T. Hence, as desired, T defines a transformation of the independent 
variable t of (2.1). As before, we set 

(2.10) 71(S) = y(T(s)), s E [0, a), C(0) = Yo. 
Together with (2.9), the chain rule provides that 

(2.11) ds (s) = y(ii(s)) dY (T(s)), S E [0, a), 
whence by (2.1) and (2.8) it follows that 

B(y (t)) y t)) (t)-y(t) (yt)) = 0, 0 < t < T 
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and therefore, by (2.10), (2.1 1), and the invertibility of B(y(t)), that 

(2.12) du (s) = v(?J(s)), (O) = yo, S E [0, a). ds 
Proposition 2.1. Suppose that the solution y = y(t) of (2. 1) tends to some stan- 
dard singular point y* E 2c and hence has been extended to a maximal interval 
[0, T*) such that limtT* y(t) = y* . (Necessarily, y* is an algebraic 1-singular 
point since the matrix of the augmentation (2.8) is invertible at y* by hypothe- 
sis). Then 

(i) There exists v* < oo such that the solution t =z(s) of (2.9) is defined for 
s E [0, o*) and that lim,,* z(s) = T*. 

(ii) The solution of (2.12) is defined and of class Cl on [0, v* + e) for some 
c >0. 

(iii) If, in addition, y* is a standard singular point, then y(ri(s)) changes sign 
as s crosses v*. 
Proof. Let J denote the set of all a such that there exists a C1 solution of 
(2.9) for s E [0, v) satisfying 0 < z(s) < T* on that interval. Clearly, J is 
not empty and hence v* = sup{d: a E J} is well defined. Thus, there exists a 
C' solution of (2.9) for s E [0, o*) satisfying 0 < z(s) < T* on this interval. 
In order to show that lim,* -c(s) = T*, note that c remains monotonically 
increasing on [0, o*) and hence that lims,* z(s) = z* < T* exists. Suppose 
that z* < T*. Then, by the continuity of y, the compactness of y([O, z*]), 
and the fact that y(y(t)) > 0 for t E [0, T*), it follows that there exists a 
positive constant yo for which y(y(t)) > yo in [0, T*]. This implies that 
a* < 00, for otherwise T(s) > yos for s E [0, oo) and hence lims-, z (s) = 00 

in contradiction with 0 < T(s) < T* < 00 for s E [0, u*) = [0, oo). But now, 
by setting z(a*) = T*, we can define a continuous extension of T to some 
interval [0, a* + c] with sufficiently small c > 0 such that 0 < T(s) < T*. 
Thus, assuming T* < T*, we obtain a contradiction with the maximality of 
*. This shows that r* = T*. 

The above arguments show only that a* < oo, but we now prove that 
a* < oo. In fact, assume, to the contrary, that a* = oo, so that q is defined 
in [0, oo). Since, by construction, cTv(q (s)) 1, it follows from (2.12) that 
c T(dil/ds)(s) _1 , whence cTiq(s) = cTyo ?s. This implies that lims,0 cT q (s) 
= oo and hence also that limsOO, ljq(s)jj = oo. But then we arrive at a con- 
tradiction since jlq(s)II = IIy(T(s))II and IIy(t)II is bounded on the compact 
interval [0, T*]. This proves (i). 

It follows from (i) that (2.12) has a unique solution q for s E [0, v*), and 
q(u*) = y* defines a continuous extension of j. Therefore, the solution of 
(2.12) can be extended to a larger interval [0, v* + c) with some c > 0 as 
claimed in (ii). 

As noted earlier, we have y(q(s)) > 0 for 0 < s < a* and y(q(u*)) = 

y(y*) = 0. Thus, a* is the first zero of y(q(s)) in [0, a* + c). If now y* is 
a standard singular point, y(q(s)) must change sign as s crosses v* . For this, 
note that by differentiation of 

B(y)v(y) = y(y)H(y), y E 2, 

together with y(y*) = 0, we obtain for all h E 1R' that 

DB(y*)(h, v(y*)) + B(y*)Dv(y*)h = (Dy(y*)h)H(y*). 
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For h = v(y*) $ 0 and any nonzero vector w E ker B(y*)T it follows from 
(2.5) and (2.6) that 

Dy(y*)v(y*) - W TDB(y*)(v(y*), v(y*)) 
_ 

a(y*)(v(y*), w) A 0. 
WTH(y*) (WTH(y*))2 

Since (d(y o q)/ds)(a*) = Dy(y*)v(y*), this proves that indeed (y o i)(s) must 
change sign as s crosses v* . O 

Altogether, therefore, by solving (2.12) and monitoring the first sign change 
of y(q(s)), we can calculate v* and hence y* = q(c*). The value of T* is 
then given by 

(2.13) T*= j y((s))ds, 

which follows directly from (2.9) and lim,,,* T(s) = T*. 
The augmentation procedure described here is designed to work in the neigh- 

borhood of a standard singular point. But in practice, also higher-order singu- 
larities y* E 0 are encountered, where the matrix of the simple augmented 
system (2.8) becomes singular. In order to avoid difficulties near such points, 
we may work with an overdetermined augmented system of the form 

(2.14) (B(y) -H( ) E)( V(y) Onx (2.14) (~C j' ( W (y)T I nq CT ~ O/\\Z(y)Tj 

Here, for given q, 1 < q < n , the matrices E and C have dimension n x (q- 1) 
and n x q, respectively, and, correspondingly, in the solution, V(y), w(y), and 
Z(y) are blocks of size n x q, q x 1, and q x (q - 1), respectively. As before, 
the matrices E and C are chosen such that at some "current" point Yc E 0 
the matrix of (2.14) is nonsingular and hence remains nonsingular for all y in 
some open neighborhood W, c 0 of y,. Thus, for each y E W, the solution 
of (2.14) is unique. Clearly, for sufficiently large q a suitable choice of E 
and C exists irrespective of dim ker B (yc), and even in the case when Yc is 
a geometric singularity, i.e., H(y,) E rgeB(y,) (unless H(y,) = 0; but see 
Remark 2.1 further below). 

We summarize some basic properties of the augmentation (2.14): 

Proposition 2.2. For given q > 1 and y E W, the solution of (2.14) satisfies 

(2.15) dimkerB(y) = dimker(w(y), Z(y)), 

and rankZ(y) - q - 1 implies that rank(B(y), -H(y)) = n. The converse 
holds if y is a regular point or if H(y) 0 rge B(y) (and hence y is an algebraic 
1-singular point). 

Proof. Generally, for y E $c we have 

(2.16) B(y)V(y) = (H(y), -E)(w(y), Z(y))T, 
as well as rank V(y) = q (since CTV(y) = Iq ) and rank(H(y), -E) = q (since 
the matrix of (2.14) is invertible), which together imply the first assertion. In- 
deed, since both V(y) and (H(y),. -E) are n x q, q < n, and have maximum 
rank q, we infer from (2.16) that 

dim kerB(y) V(y) = dim ker(w(y), Z(y))T = dim ker(w(y), Z(y)) 
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(recall that (w(y), Z(y)) is qxq ). Moreover, using again the fact that ker V(y) 
= {0}, we see that 

(2.17) dim ker B (y) V(y) < dim ker B(y). 

Thus, to complete the proof of (2.15), it suffices to show that the converse 
inequality of (2.17) holds. This follows at once if we can show that kerB(y) c 
rge V(y) . For this, let u E kerB(y), so that 

(2.18) (B)T Olxl) 01 (CT u 

On the other hand, multiplying both sides of (2.14) by CTU, we get 

(B(y) - H(y) E /VCyCTU\ Ox (2.19) ( CT 0 ? W(CTU ~ o} Z -y\CTTU 

But the systems (2.18) and (2.19) have the same right-hand side, and hence, 
because the matrix is invertible, the solutions are identical whence, in particular, 
u = V(y)CTu and therefore u E rge V(y) . 

If rankZ(y) = q - 1, then rgeEZT = rgeE. Therefore, rgeE c 
rge(B(y), -H(y)) and hence rge(B(y), -H(y), E) = rge(B(y), -H(y)), 
which for rank(B(y), -H(y)) < n contradicts the nonsingularity of the ma- 
trix of (2.14). Conversely, that rank Z(y) = q - 1 if y is regular is obvious 
from (2.15). 

To prove that rank(B(y), -H(y)) = n and H(y) ? rgeB(y) imply 
rankZ(y) = q - 1, suppose that H(y) ? rgeB(y) and rankZ(y) < q - 2, 
so that dimkerZ(y)T > 2. Let u,a, a 1, 2, be two linearly independent 
vectors in kerZ(y)T. By (2.16) we have 

B(y)V(y)ua = (W(y)TUa)H(y), a = 1, 2, 

and hence W(y)TU, = 0, a = 1, 2, since H(y) 0 rgeB(y). Thus, Uc, E 
ker(w(y) , Z(y))T, a = 1, 2. By (2.15) the linear independence of the two vec- 
tors implies that dim ker B(y) > 2, which in turn implies that rank(B(y), -H(y)) 
<n. o 

For y E W, and any vector a(y) E kerZ(y)T we have 

(2.20a) B(y)v(y) = y(y)H(y), C(y)TV(y) = a(y) Ta(y), 

with 

(2.20b) v(y) = V(y)a(y), c(y) = Ca(y), y(y) = w(y)Ta(y). 

This has the general form of (2.8), and as before, y(y) = 0 implies that B(y) 
is singular if a(y) 5 0. But, the converse is true only if H(y) 0 rgeB(y). 
Moreover, in order to produce smooth functions v, c, and y, the vector a(y) 
must depend smoothly on yj. This is easily guaranteed as long as rank Z (y) = 
q - 1 but not in general unless we drop the assumption that a(y) 7? 0. Let 
Z'(y) denote the (q - 1) x (q - 1) submatrix obtained from Z(y) by deleting 
the ith column. Then the vector 

(2.21) a(y) = (al(y), .. . , aq(y)), 
T 

aj(y) =(-1)' det Z'(y)j 
i =I~,. , q, 
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obviously depends smoothly on y and satisfies Z(y)Ta(y) - 0 (see, e.g., [16, 
Appendix II]). Moreover, we have a(y) 0 0 exactly if rankZ(y) - q - 1. 

For this choice of a(y) the following result holds. 

Proposition 2.3. For y E W, and with the vectors (2.21) consider the relations 
(2.20). Then y(y) = 0 exactly if B(y) is singular. 

Proof. If y(y) = 0, then either rank Z(y) < q - 1, in which case, by (2.15), 
B(y) is singular, or rank Z(y) = q - 1 , whence a(y) :& 0 and thus also v(y) 54 
0, which together with B(y)v(y) = 0 implies again that B(y) is singular. 
Conversely, suppose that B (y) is singular. In the case rank Z (y) - q - 1, we 
have again v (y) :A 0, and Proposition 2.2 ensures that H(y) ? rge B(y) . Thus, 
the first equation (2.20a) leads to a contradiction unless y(y) 0. On the other 
hand, for rankZ(y) < q - 1 we necessarily have y(y) = 0 because a(y) = 0 
in that case. o1 

By Proposition 2.2 we see that when y is a geometric singular point, then 
necessarily rank Z (y) < q - 1 . Such points constitute "higher" singularities. 
Our choice (2.21) of a(y) evidently transforins these points into equilibrium 
points of the dynamic system (2.12) with v as in (2.20b). 

Computationally, the simplest case arises with q = 2, where (2.14) has the 
form 

B(y) -H(y) e ( V (y) V2(Y) 0 o\ 
(2.22) ( cT 0 0 | (Wi(y) w2(Y) = 1 01. 

CT 0 0 \Z I(y) Z2(Y) I 0 1,J 

Hence, the vector (2.21) becomes here a(y) = (-z2(Y), zI(y)), and we obtain 

V(y) - z2(y)v (Y)-ZI (Y)V2(Y) 

(2.23) y(y) = z2(y)w1 (y) -Z (Y)W2(Y), 
C(y) = z2(y)cI(Y) -Z1(Y)C2(Y). 

Proposition 2.3 implies that y(y) does not vanish on a trajectory terminat- 
ing at a singular point y* E Wc unless y = y*. Obviously, (2.22) has the same 
general form as the simple augmentation (2.8), and the computational proce- 
dure is the same as before, namely, we form and solve the explicit equation 
(2.12). The only difference is that the normalization condition now involves 
the nonconstant vector c(y) while in (2.8) this vector was constant. 

The constancy of c was used in Proposition 2.1 to prove that for an alge- 
braic 1-singular point there exists v* < oo such that the solution t = z(s) of 
(2.9) is defined in [0, v*) and that lims,f* z(s) = T*. The result is easily 
extended to the case when c depends on y . For this, note that the proof of the 
existence of v* < oo carries over verbatim and irrespective of the singularity 
encountered at y*; all that is needed is that the matrix (2.22) be invertible at 
y*. Now if y* is an algebraic 1-singular point and v* = oc, we conclude 
from C(i1(s))TV(n(s)) = la(y)I12 that c(y*)Tv(n(s)) > e > 0 for all s close to 
v*. Indeed, rank Z(y*) = q - 1 by Proposition 2.2 and hence a(y*) :& 0. In 
other words, for sufficiently large s it follows that c(y*)T(dn/ds)(s) > e and 
therefore that C(y*)Tn(S) > E(S - SO) + c(y*)Tn(sO) for s > s0 and s0 large 
enough. As before, this contradicts the boundednes of 11t(s) I for s > 0. 
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If y* is a standard singular point, then y(q(s)) changes sign as s crosses 
v*. On the other hand, if y* is not an algebraic 1-singular point, then we can 
no longer ascertain that v* < oo. 

Remark 2.1. The matrix of any augmentation (2.14) and, in particular, that of 
(2.8) or (2.22), will be singular at any point y E ', where H(y) = 0, that 
is, at any stationary (equilibrium) point of the autonomous ODE (2.1). This 
reflects the fact that any regular stationary point can be reached only in infinite 
time, and hence our scale transformation must become undetermined along 
such trajectories. Clearly, the natural resolution of this difficulty is to make the 
system (2.1) nonautonomous by adding the equation i = 1 . 

3. SINGULAR POINTS OF DAEs 

In this section we turn to differential-algebraic systems of the following form. 

Definition 3.1. The equation 

(3.1) A(x)x = G(x), 

with C2 mappings A: 0 -* 5(Jf) and G: 0 --1 R1 on some open set 2 c 
Rn, is a quasi-linear DAE on 0 if 

(3.2) G(x) E rgeA(x), x E J ==rankA(x) = r < n 

and if the mapping 

(3.3) (x, p) se gr x in - A(x)p -G(x) C in 
is a submersion. 

The submersion property of (3.3) requires that for every (x, p) C g x in 
the mapping 

(3.4) (h, k) C Rn x iRn (DA(x)h)p + A(x)k - DG(x)h iRn 

is onto (see, e.g., [1]). As a consequence, the set 

(3.5) M = {(x, p) c- xRn : A(x)p -G(x)-O}0 
is a closed n-dimensional C2 submanifold of 2 x Rn . 

In [11] a geometric procedure was developed for reducing an implicit DAE, 
F(x, x~) = 0, to an ODE on a manifold locally near a point (xo, p?) E F-I (0) . 
A simplified version of this reduction process for quasi-linear DAEs (3.1) is 
given in [12]. In that case the reduction is local only in the first variable, owing 
to the linearity of the equation in x. We summarize briefly this process for 
(3.1). 

Set 

(3.6) W = {x E ? : G(x) E rgeA(x)}, 

so that (x, p) E M if and only if x E W and hence W = 7z(M), where 
7 : 0 x IR' -- 0 is the projection onto the first factor. Under the conditions 
of Definition 3.1 it can be shown (see [12, Proposition 3.1]) that W is an r- 
dimensional C2 submanifold of _ and that W is closed in _ if the set 
{x E 2: rankA(x) = r} is closed in 2 . 

For any C1 solution x: J -* 2 of (3.1) on an open interval J c R' we 
must have x(t) E W for t E J and thus (x(t), x(t)) E TW for all t E J, 
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where we view here the tangent bundle TJW as a subset of TR' = Rn x Rn 
Hence, (x(t), x (t)) E M implies that (x(t), x (t)) E TWnM for all t E J. The 
desired reduction of (3.1) now requires a (local) characterization of TW n M. 

For this, let xo E W. Then there exist open subsets % c W and 9v c R' 
and a C2 map y : v- Rn which is a diffeomorphism of Z/ onto Y. In 
other words, r-1 is a chart of W at x?. 

Evidently, Z/ and Y may be chosen small enough such that there is a linear 
subspace Z? c CRn which complements rge A ((o (y)) for all y E W . Let P0 be 
the pi^ojection of Rn onto rgeA(xO) along Z 0, and LO any linear isomorphism 
from rgeA(xO) onto R1. Then LOPO is a linear isomorphism of rgeA((o(y)) 
onto R' for all y E W, and it follows that 

{(X, p) E TW n M, X E %} X = 
B(y)q 

= 
H(y)-?, 

where we have set 

(3.7) B(y) = LOPOA((p(y))DQ(y), H(y) - L0P0G(Q(y)). 

It is plain that the operators B and H map into ?(RT) and R1, respectively, 
and are of class C1 . 

If the interval of definition J c IR' of the solution is restricted to ensure 
that x(J) c Y and therefore that (x(t), x(t)) E TW n M and x(t) E Y for 
all t E J, then the C' function 

(3.8) y: J - , y(t)= - ox(t), 

is a Cl solution of the equation 

(3.9) B(y)j =jH(y) 

called the reduction of (3.1) near xA . Conversely, for any Cl solution y: J 
v/ of (3.9) the function x(t) = y oy(t) is a Cl solution of (3.1). 

Evidently, if B(y) in (3.9) satisfies the conditions of Definition 2. 1, then the 
augmentation procedure of ?2 can be applied. This is the case when (3.1) has 
index 1 in the sense of the following definition. 

Definition 3.2. The quasi-linear system (3.1) is a geometrically nonsingular DAE 
of index 1 if 

(3.10) {x E W, G(x) E rgeA(x)l ,} =X rankA(x)ITxw = rankA(x) (= r). 

Remark 3.1. A geometrically nonsingular DAE of index 1 may reduce to a 
singular ODE with algebraic singularities in the vicinity of some point. In 
particular, the impasse points discussed below are of this type. On the other 
hand, if (3.10) does not hold, there are several possibilities: 

(a) {x E W, G(x) e rgeA(x)1TJ,f} implies rankA(x)ITW = p < r. If so, the 
reduction (3.9) of (3.1) is a DAE and not an ODE as in the index-l case. This 
leads to higher-index DAEs as defined in [1 1]. 

(b) rankA(x)IT W = r for "most" but not all x E W satisfying G(x) E 
rge A(x) T W . If so, the reduction (3.9) of (3.1) is a singular ODE with geometric 
singularities. We shall encounter such a situation in our examples later, and it 
seems appropriate to call (3.1) a geometrically singular DAE with index 1. 
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(c) rank A(x)IT W is neither constant nor mostly equal to r. If so, the reduc- 
tion (3.9) of (3.1) is not a DAE in the sense of Definition 3.1, nor a singular 
ODE. No theory exists for this case, which fortunately does not seem to occur 
too frequently in the applications. El 

From (3.10) it follows that for xo E W1 =_ 7(TWnM) c W we have B(yO) E 
GL(Rr), where y? -= y1(x0), and this provides the basis of the following 
existence and uniqueness theorem for (3.1). 

Theorem 3.1. Let (3.1) be a geometrically nonsingular DAE of index 1. Then, 
for any x0 E WI = - (T W n M) c W there exists a unique C 1 solution x: J - 

2 on some open interval J containing the origin of the initial value problem 

(3.1 1) A (x)xt = G (x) x(0) -xo. 

Moreover, no C1 solution of (3.1 1) exists for x? I V1. 

Definition 3.2 does not rule out the existence of points xo e W where 
rankA(x0)IT 0 w < r, but then G(xO) 0 rge A(x0)1T70 w, and hence such points 
do not belong to the set W1 = 7r (TW n M) (see Remark 3. 1). In particular, by 
Theorem 3.1, no Cl solution to the corresponding initial value problem (3.1 1) 
exists. Nevertheless, in analogy to Definition 2.3, "one-sided" solutions may 
well occur at such points: 

Definition 3.3. A solution of the initial value problem (3.1 1) at a point xo E W 
x? r (TW nM) , is any continuous function x: J -+ 2 defined on an interval 
of the form J = [0, T) or J = (-T, 0] for some T > 0 which is of class C1 
on JO = J\{0} and satisfies x(O) = x? and A(x(t))x(t) = G(x(t)) for t E JO. 

In [12] a precise definition of accessible and inaccessible impasse points of 
geometrically nonsingular DAEs of index 1 (and higher) is given, where the 
existence of one-sided solutions can be guaranteed. We shall not repeat this 
theory here but summarize the main result in the form of the following theorem 
(see [12, Lemma 5.1 and Theorem 5.1]). 

Theorem 3.2. Let (3.1) be a geometrically nonsingular DAE with index 1. The 
point xo E W is an accessible or inaccessible impasse point of (3. 1) if and only if 
y0 = -I (X0) is an accessible or inaccessible standard singular point, respectively, 
of the reduction (3.9) of (3.1) Iccally near x?. Then, the initial value problem 
(3.1 1) has exactly two solutions in the sense of Definition 3.3, both defined either 
on J - [0, T) or J = (-T, 0] for some T > 0. Moreover, jji(t)jj tends to 
infinity as t tends to zero. 

As an illustration we consider the first and third examples of [6], which have 
the form 

i 0t 
0 1 0 = G (x), x E R3, j- =1,2, 

with 
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Hence, in both examples the conditions of Definition 3.1 are satisfied with 
r = 2. Moreover, we have 

W {x E R3: x + x3 (x2 x3)=}, 

and, evidently, the mapping 

2 3 ~~~~~Y2 (YI + Y2)\ Y2 y I+ 3y22 
(p R2 R3 vp(y) = -Y1 , D?p(y) =-1 0 

-Y2 , 0 -1 

is here a global diffeomorphism from R 2 onto W. Therefore, with the linear 
isomorphism 

0 1 0) 

the reductions of the two problems have the form 

(Y2 Y+ 23Y ?Hj(y) j=1,2, 

where 

H, (y) (Y2) H-Y2) 
Hi(y = (n) H2(Y) = Y 

Obviously, in both cases, the singular points form the one-dimensional manifold 

K = {y 2 Yi +3y2 - } 

and we have dimkerB(y*) = 1 and rgeB(y*) = span(y*, 1I)T for y* E K. 
Moreover, for j = 1 we see that Hl(y*) ? rgeB(y*) for all y* E K with 
Y* 0 ?, -1 while for j = 2 we have H2(y*) E rgeB(y*) for all y* E K. 
Thus, in the second case, none of the points of K is an impasse point. On the 
other hand, for j = 1, a simple calculation with u - (0, 1)T E kerB(y*) and 
v = (1 , y*)T E kerB(y*)T shows that 

a(y*)(u, v) = -6(y2*)2(y* + 1), 

whence, all points y* E K with y* / 0, -1 are here impasse points which are 
accessible for y* > -1, y* / 0 and inaccessible for y* < -1 . 

Thus, for j = 1, 2 the points y* E K, y* = 0, -1, and for j = 2 all points 
y* E K, are higher singularities. In both cases, y* = 0 is also a stationary point. 
The differences between these higher singularities and the impasse points in the 
first example were observed in [6] but explained differently. 

4. COMPUTATION OF SINGULAR POINTS OF DAEs 

The reduction process for quasi-linear DAEs sketched in the previous sec- 
tion and the resulting theory of impasse points for nonsingular DAEs of index 
1 suggests that we may compute such points by applying the augmentation ap- 
proach of ?2 to the reduced system (3.9). In this section we show that this does 
indeed lead to an efficient computational algorithm for a variety of singularities 
including, but not limited to, impasse points. 

For simplicity we develop the method only for the following DAE initial 
value problems occurring frequently in applications: 
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Here, Al: - Y(IRn, Rr), G1: - - - I+R', G2: -* R" are C2 maps on 
some open set ' c iRi, with n = r + p, p > 0, and (4.1) is assumed to be a 
quasilinear DAE in the sense of Definition 3.1. 

The submersion condition for the mapping (3.3) requires that rank DG2(x) = 
p for x E 2 and hence that the set 

(4.2) N- {x E -: G2(x) =O} 

is an r-dimensional C2 submanifold of B. 
The manifolds (3.5) and (3.6) are given here by 

(4.3) M= (x, p) E0x R': x E N, AI(x)p =Gl(x)l, 
(4.4) W = {x E N: rankA1(x) = r}, 

and this allows for some simplification of the reduction process. We denote by 
Xc E N the points where the local coordinate systems are to be "centered" and 
computed. More specifically, we follow [14] and use the following tangential 
local coordinate systems. Let Uc = U(xC) E 9(Rr, in ) define an orthonor- 
mal basis of kerDG2(xC). Then the implicit function theorem applied to the 
equation 

(4.5) G2(xC+UCy+ DG2(XC)TZ)=0, yERr,Z E P, 

guarantees the existence of open neighborhoods 2K of the origin of Rr and 
2 C in' of xc such that for any y E Wc there exists exactly one solution z of 
(4.5) with xc + Ucy + DG2(XC)TZ E %,, and that the mapping g: -c > RP, 
Vi(y) = z is of class C1 on 'c . Evidently, we have y,(0) = 0 and Dyi(O) = 0, 
and 

(4.6) p: c i-nR, t(y) = xc + UCy + DG2(xC)TyI(y) VyEGc, 

is a diffeomorphism from ?c onto N n gj. In other words, -9 is a chart of 
N at xC, and we call (0 a tangential local coordinate map at xc . 

As in [14], by shrinking if necessary the neighborhoods Wc and %c, we can 
extend Uc = U(xC) to a moving frame on Y, that is, to a C1 mapping 
U: 2 --2 (Rr, i nf) such that the columns of U(x) form an orthonormal 
basis of kerDG2(x) for each x E %$j. 

Then, for y E 24 and x = -(y) we have (x, p) E M exactly if 

(4.7) B(y)p = H(y), B(y) -A1 (q (y))Dq(y), H(y)- GI ( (y)). 

Hence, if xc E W, then necessarily rankA1(x) = r for x E Rn in some 
neighborhood of xc and thus, by restricting again, if needed, the neighborhoods 
Wc and 2, we find that 

(4.8) B(y) j = H(y) 

represents for y E ?c the reduction of (4.1) locally near xC. 
For the computation we need to be able to evaluate (0(y) and D(o(y) for 

y E Wc. There are various possibilities for computing x = q(y) for given y. 
For example, as discussed in [14], we may use at x = xc the QR factorization 

(4.9) DG2 (x)T = (Ql (x), Q2 (x)) (x(n)) , rge Q2 (x) = ker DG2 (x), 
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and then set Uc = Q2(xC). Now, for any given y E I1tr with sufficiently small 
norm, the chord Newton algorithm 

Eval- y: Input: y, R(xC), Ql (xC); 
1. x=XC+ucy; 
2. while 'no convergence' 

2.1. solve R(xC)TZ=G2(X) for z; 
2.2. set x :=x-Q(xC)z; 

3. Output: x 
converges to x = ( (y) E N and hence implements the tangential coordinate 
system. 

For the computation of Dtp(y) at any y E Wc note that 

(4.10) (Uc)TDy(y) = (Uc)TUC + (UC)TDG2(XC)TDYV(y) = (UC)TUC I=r. 

Moreover, since DG2(y(y))Dy(y) = 0 it follows that Dy(y) = U(y(y))K(y) 
for some nonsingular K(y) E Y(RIr). Together with (4.10), this implies that 
K(y) = U(y(y))TD(p(y) and therefore that 

(4.11) D?(y) = U(y(y))[( UC)TU(y (y))f-l 

Clearly, since U: gj Y( (Rr, Rf) is of class Cl, the same holds for 
Dy. But it turns out that we do not need U(x) to be a C' moving frame 
on a neighborhood of xc on N. In fact, suppose that U(x) E Y(Rl, RP) 
represents, for x = y(y), Y E Wc, an arbitrary basis matrix of kerDG2(x) and 
that U(xC) = U(xC). Then we have U(x) = U(x)Q(x) with some nonsingular 
Q(x) E Y(RIr), and hence 

D(y(Y) U(x)[(Uc)TU(X)]-i = U(x)Q(X)[(uc) TU(x)Q(x)E] 

U(X)[(UC) TU(X)f-1 

While for points x in a neighborhood of a fixed point xc the particular 
choice of the basis matrix U(x) does not matter, the orientation of U(C) -uc 
does play a role when we move from xc to another point xc where a new local 
coordinate system is to be centered. The compatibility condition for charts on 
a C1 manifold requires that uc = U(&C) tends to Uc = U(xC) when xc -* xc 
and, in particular, that both bases have the same orientation: 

det(UC)TUC > 0., 

This will be guaranteed by applying the moving frame algorithm of [14] in the 
construction of the new basis Uc. 

As indicated, if (4.1) is a nonsingular DAE of index 1, then one of the 
augmentation procedures of ?2 will be applied to the reduced ODE (4.8). In 
practice, it is useful to work with a larger augmentation (2.14) rather than with 
(2.8) in order for the process to function also near higher-order singularities than 
just standard impasse points. For this, the augmentation (2.22) with q = 2 was 
chosen, for which v(y) and y(y) are easily determined by (2.23). 

For the solution of the initial value problem (4.1) with xo E N the augmen- 
tation is constructed at certain (but not necessarily all) the computed points xc 
along the trajectory where local coordinate systems are centered. Thus at these 
points the local coordinate map (4.6) is available, and hence the reduced system 
(4.8) has the form 

BCp = HC BC = Al(xc)Uc, HC = GI(xC). 
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There are various ways for computing suitable vectors e, C1, C2 to ensure that 
the matrix of the augmented system (2.22), that is, here 

Bc -HC eX VI V2 /0 O' 
(4.12) (c H OWI W2 |D( 0) 

kC T 0 02 ZI Z2 2 0 1 

is nonsingular. For relatively small dimensions r we may use, for instance, the 
singular value decomposition 

{J VT(BC _HC)VR - (E, 0), 
VL E Rrxr VR EIRlxrRl, = diag(1,... ,0 r), u1l > ?2 ? _ r?_ 

Let el, k- 1, ..., m, denote the natural unit basis vectors of 1R'm. Then, 
with 

(4.13) VRer+I = (V) Rer+ = (U2) 

we choose the augmenting vectors 

(4.14) e = ?VLer, c=ul C2U- U 
rIu IIUI 112JU2 112 

provided that u1 and u2 are nonzero; otherwise, VRe+'l for some suitable J 
lower index j is used. The sign of e in (4.14) will be addressed shortly. 

Under the assumption that 

(4.15) rank(BC, _HC) ? r - 1, 
the matrix of (4.12) is nonsingular if and only if f)2 + e)2 1 . In fact, for any 
null vector (qT, 4, q)T e R1r+2 of (4.12) we have 

uiqi 0, i=l,... ,-1, 
(4.16) VTr +11=O for (,)=VR(,) 

Hence, if (4.15) holds, then as > 0, i11, ..., r- 1, whence q 0 , i = 
1,..., r - 1, and q = Xu1 + qrU2 . Since, by assumption, cTq - cTq = - , it 
follows from (4.14) and (4.16) that 

(UTU1 UT)U2)() - (uTq) =0 

U2 Ul Us U2 qr U2 q 

where, because of the orthonormality of the vectors (4.13) the determinant of 
the 2 x 2 matrix equals 1 - wf - _w)2. Thus, if this determinant is nonzero, 
then qr = =O, whence q=O and 4 = 0, and also q = 0 by (4.16), and the 
augmented matrix of (4.12) is invertible. Note that (4.15) holds at every regular 
or algebraic 1-singular point yc = -I(xc) of (4.8) (see Proposition 2.2) and 
hence, in particular, at every impasse point xC. 

For the choice of the direction of the vector e of (4.14) suppose that Bc is 
nonsingular, that is, that we are not exactly at a singular point of the reduced 
system. Then a block LU factorization of the matrix of (4.12) shows that 

d Bc ( Hc eB 
detl CT O O | det Bcdet(Cl ,C2 )T(Bc)-'(Hc, -e). 
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The solution of the augmented system (4.12) gives 

12 = (C1, C2)T (VI, V2) = (Cl , c2)T(BC) -(Hc ,e (eWI W2) 

In accordance with (2.23) we compute now 

vC (WI W2) (vI) yC det WI W2 

whence altogether we find that 

(Bc Hc e 
(4.17) signdet CT 0 0 -signdetBc signdetyc. 

CT o 0/ 

In line with the theory of ?2 we choose the augmenting vector e such that the 
left side of (4.17) remains positive. In other words, we use the factorization of 
the matrix of the augmented system (4.12) to monitor the sign of its determi- 
nant and replace the computed z1 and Z2 by their negative values when that 
determinant is negative. 

Once the augmentation vectors e, C1, C2 have been constructed, the aug- 
mented system (2.22) has a nonsingular matrix for any y E IR' with sufficiently 
small norm. Hence for these y the right side v (y) of the explicit ODE (2.12) 
can be computed by (2.23). This evaluation of v(y) and y(y) is implemented 
as a subroutine of the following form: 

Eval-v: Input: y, QR-factors Qi (xC), R(xC), augmentation vectors e, 
Cl , C2 ; 

1. Use Eval- yp to compute x = (y) 
2. Use (4.1 1) to compute D y (y) and B(y) = AI (x)Dp (y) 
3 Form the matrix of (2.22) using the vectors e, cl, C2; 
4. Solve the augmented system (2.22); 
5. Use (2.23) to compute v(y) and y(y); 
6. Output: v(y), y(y). 

This routine allows us to apply one (or several) steps of a standard explicit 
Runge-Kutta solver, such as RKF-45 or DOPRI-5, for the approximate solution 
of (2.12). Note that during one (successful) step of such a Runge-Kutta solver, 
from, say, y? to yI, we obtain in the first and last stages from 'Eval-v' the 
values y = y(yO) and y = y(yl), respectively. 

Altogether, our algorithm for one step along the solution of (4.1) now has the 
following general form: 

SingDAE: Input: Current point xk, suggested step hk, 
tolerance tol, minimal step hmin; 

1. Set xc = xk and compute the QR factorization (4.9) at x = xC; 
2. With UC = Q2(xc) evaluate BC = AI(xc)Uc; 
3. For Bc compute the augmentation vectors e, cl, C2 in (4.12); 
4. Using Eval-v, take a Runge-Kutta step for (2.12) from yo = 0 with 

step h = hk to obtain yI, a new step hI, and yo = y(y0), y = 
Y( 

. \ 
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5. If 'Step not accepted' then 
5.1. Replace h by h/2; 
5.2. If IhI > hmin then go to 4 else error return; 

6. Call Eval- SO to compute xk+1 = yP(yl) E N; 
7. Output hk+1 - hi xk+l; 
8. If 'sign y? :A sign y I then 

singular point passed; if desired, call rootfinder to compute the 
point. 

When y has different sign at two consecutive points xk and xk+l, indicat- 
ing the presence of a singular point, then a rootfinder is applied in step 8 to 
determine the stepsize h from xk, which gives y(y1) - 0 and hence which 
provides the singular point. For this, a simple algorithm of the Dekker-Brent 
type (see [2]) has been used. If an impasse point has been passed, then xk and 
xk+l lie on trajectories with opposite orientation. Hence, in order to proceed 
from xk+l, we have to change the sign of the step h. At higher-order singular 
points this may or may not be required. 

In steps 1, 2, and 3 of 'SingDAE' a new local coordinate system and new 
augmentation is computed for each Runge-Kutta step. This has been found ad- 
equate in smaller applications. However, for larger problems it is desirable to 
retain the same coordinate system and augmentation for several Runge-Kutta 
steps. The reliability of the augmentation can be checked by monitoring the 
condition of the augmented linear system in 'Eval-v', while the rate of conver- 
gence of the chord Newton process of 'Eval- p ' provides a good indicator for 
the validity of the current local coordinate map. If one of these tests fails, then 
the output of 'SingDAE' is not accepted and the routine is restarted with a new 
local coordinate system and augmentation. 

There should be no need to enter into the details of such a modification of 
the process. The approach has similarities with that employed in [8]. 

5. NUMERICAL EXAMPLES 

As noted in the introduction, impasse points for DAEs arise frequently in 
nonlinear circuit problems. As an example, we consider a simple circuit con- 
sisting of a nonlinear resistor, linear capacitor, and linear inductor in parallel. 
The characteristic of the resistor is given by u = y + i2, where i and u denote 
the corresponding branch current and voltage drop, respectively. The example 
was considered earlier by F. Takens (see [17]), and again in [12], and is modelled 
by the DAE 

0 0 1 0\ X4 \ 

(5.1) 0 0 0 1 x2 ) 0 0 0 0) X K X?2+ X3 
0 0 0 0 X4 Y I 

Here, xj = ij, j = 1, 2, 3, are the currents in the three branches, x4 - u 
is the voltage drop, and, for simplicity, the capacitance and inductance were 
normalized to one. It is readily verified that (5.1) is a DAE on all of iR4 with 
r - 2 in the sense of Definition 3.1. 
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In the notation of (4.1) the constraint manifold (4.2) is given here by 

R4 ~~~~~~~XI + X2 + X3N 
(5.2) N={xE4: G2(x) = O}, G2(x)= (Xx p X2 

In this case we can define the following global coordinate mapping on N: 

(5.3) (D: 1R2 N, (D (y) - (Y+Y2) 
(-(Yi +Y2)) 

Y + Y 

and hence the system 

(54)~~~~ 32y, 0) ( Y2) 

constitutes a (global) reduction of (5.1). Clearly, (5.4) is a nonsingular ODE 
for all yE E2 with Yi 5 0. Moreover, all points of {y E R2: Yi = 0, y o 0} 
are standard singular points of (5.4) while y = 0 is a geometric singular point. 
Thus (5.1) has the one-dimensional submanifold 

{ X E R4; X= (0 , -4,~ y)T, 4 ER, g+00} 

of impasse points, while x* = (0, 0, 0, 7)T is a higher singularity. A closer 
analysis of the example in [12] shows that the singularity at x* has a different 
character for the four cases (i) y > 1/8, (ii) 1/8 > y > 0, (iii) y - 0, (iv) 
y < 0. In particular, except in case (iii), the point x* is a funnel point in the 
terminology of [17]. 

Figures 1, 2, and 3 show computed results obtained with the algorithm of 
?4 applied to (5.1) for the three values y = 1.0, y 0.0625, y = -1.0, 
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respectively. In each case the impasse points x = (0, , - y)T for 4 > 0 are 
accessible while those for 4 < 0 are inaccessible. Moreover, for y = -1.0 the 
funnel nature of x* is clearly visible. The results certainly show that already 
very simple circuits may have a relatively complex singularity behavior. 

As a second example, we consider a two-phase plug flow problem described 
by Byrne and Hindmarsh ([4], see also [7]). The equations are given in the 
form: 
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7r -(R - Y) P'2.51og[ pR , P1 - 5 + 10.5) 

- bQco - POQco(l -b) = O P0 

27r4 P/ ((2.5Ry-1.25y2)log P,R5 

y2 ~ 2 
+3Ry - 2.125y2- 13.6Ru RQa = 

where P' is the time-derivative of P. With xl = P, x2 = 1/-=P', and 
X3 = yv-F', the system can be written in the form 

2+ 1 = 0, 

(5.5) x (4.2 + 1og(C1X3 - 5))(1 - - C2X2(bxi + C4(1 - b)) = 0, 
X3((2-X2X3) 1og(C1X3-5) + (2.4- 1.7X2X3)) -C3 = 0, 

where, after scaling the time by a factor i0-7, the constants are 

cl =R p 
C2 - P Qco 

C3 
10.88 

+ 4PQa C4= I0-'PO 
Au 2 C2=2.527LuRc, ' 3 c1 7(/Rc1 4=1 0 

As in [7], we used the values 

R= 45.72, p = 0.814, u = 0.098, b = 0.345, 
Qco = 1.7153 x 106, Qa 3.027 x 105, P0 = 1.378 x 108, 

for which 

cl = 2012.47, c2 = 19.7157, C3= 3.48464, c4= 13.78. 

It turns out that the system (5.5) has a singularity at x* = (0, 0, x3*)T for 
X* = 0.236849. More specifically, the system has index one in the sense of 
Definition 3.2, and for the reduced ODE, x* is an algebraic 1-singular point. 
But, since the form (2.6) is zero at x*, this point is not an impasse point. In 
fact, x* corresponds to a hysteresis point for stationary equations. 

The code was applied to the system (5.5), starting from the point 

y- = (13.78, 0.42256012, 0.24921339)T 

given in [7]. The resulting trajectory is shown in Figure 4. The singularity y* 
is reached for t* = 1.0958, where the derivative y' becomes infinite. At the 
singular point the flow is choked, and hence the part of the trajectory beyond 
that point is physically meaningless. But it is noteworthy that the code has no 
difficulty in passing through that point. 
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